
STABILITY OF AN EULERIAN ROD. NONLINEAR ANALYSIS 
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i. Formulation of the Problem. The nonlinear Euler equation describing the deformed 
state of an elastic rod of variable stiffness, hinged at one end and subjected to a force P 
applied at the other end (Fig. i), has the form [I, 2] 

d2y r / dy\21o,5 
§ k2p (x) y [i -- - k ) = 0  

dx  2 

pl 2 
Xo < Z <~ x l  = xo + :~ , k 2 - 

EI.~'- ' 

(1.1) 

where y is the deflection, E is Young's modulus, I is the moment of inertia, the function 
p(x) characterizes the variation of the stiffness along the rod, s is the length of the rod, 
F(y, k) = 0 is the operator form of Euler's equation, and the rest of the notation is eluci- 
dated in Fig. i. 

Equation (i.i) is an example that is quite often encountered in the proof of existence 
theorems for solutions of nonlinear differential equations [1-3] and qualitative analysis 
of many physical phenomena, modeled by these equations [4, 5] 

In applied analysis the linearized Euler equation is employed for solving different 
particular problems, differing by the method employed for fastening the rod and the character 
of the forces acting on the rod [6-8]. The nonlinear equation (i.i) has been solved in ellipt- 
ic functions only for a rod with a constant transverse cross section (p(x) = i) [3]. 

In some works [6, 8] the displacement A of the free end of the rod is neglected as a 
higher-order infinitesimal compared with the deflection, and Eq. (i.I) is replaced by the 
nonlinear equation 

+ t + ] = 0, ( 1 . 2 )  
ds z 

which is solved under the assumption that p(s) = i. 

Equations (i.i) and (1.2) become identical after linearization, but large errors are 
made in nonlinear analysis if Eq. (1.2) is used instead of Eq. (i.I). However, the assertion 
made in [2] that Eq. (1.2) has no solutions for k 2 > U and, therefore, that this equation is 
physically meaningless is not absolute. This will be shown below. 

The stability of the solutions of Eq. (i.i) with the boundary conditions 

y ( x o )  = y ( x l ) =  0 ( 1 . 3 )  

i s  i n v e s t i g a t e d  by t h e  method of  p r o j e c t i o n s  [4 ] ,  a c c o r d i n g  to  which t he  comple te  space  of  
c h a r a c t e r i s t i c  f u n c t i o n s  o f  an a p p r o p r i a t e  l i n e a r  o p e r a t o r  i s  de t e rmined  and t h e  concep t  o f  
amp l i t ude  i s  i n t r o d u c e d .  The c o n d i t i o n  o f  s o l v a b i l i t y  (F r edho lm ' s  theorem of  t he  a l t e r n a t i v e )  
e n a b l e s  c a l c u l a t i o n  o f  t h e  boundary  d i v i d i n g  t h e  range  o f  t h e  p a r a m e t e r s  of  t he  problem ( 1 . 1 )  
and ( 1 . 3 )  i n t o  zones  o f  s t a b l e  and u n s t a b l e  s o l u t i o n s .  

Bes ides  Eq. ( 1 . 1 ) ,  t h e  s t a b i l i t y  o f  s o l u t i o n s  o f  t h e  e q u a t i o n  f o r  a loaded  rod c o n t a i n -  
ing i m p e r f e c t i o n s  has a l s o  been s t u d i e d .  

Complet ing t h e  f o r m u l a t i o n  o f  t h e  problem,  we n o t e t h a t  i f  t he  boundary c o n d i t i o n s  f o r  
Eq. ( 1 . 2 )  a r e  
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y (so) = ~ (s~ - ~ (y))  = o, (1.4) 

then the problems (I.i), (1.3) and (1.2), (1.4) are equivalent. In order to analyze stabil- 
ity it is preferable to write the problem in the form (i.i) and (1.3) due to the homogeneity 
of the boundary conditions. 

2. Stability of Analysis. Expanding Eq. (i.i) in a series in powers of y and dy/dx at 
the point (y, dy/dx) = (0, 0) gives 

F (g, k) =- Lhy + x~ c .y  (dg/dx) ~-~ = O, ( 2 .  I) 
n=2 

where L k = d2/dx 2 + k2p(x) is the generating operator; 

1 o n (k2p (z) y (1 -- (@/dx)2) ~ '~). 
Cn ~ n! Og O (dg/dx) n-1 

The spectrum of the operator L k consists of the eigenvalues 12 of the boundary-value 
problem 

L, . y=O,  g ( x o ) = ~ ( x l ) = O .  ( 2 . 2 )  

In the general case, if p(x) does not have some special form, the eigenvalue problem 
(2.2) can be solved only by approximate methods [9]. The question of convergence of any 
method remains open and depends on making a successful choice of the basic equation. With- 
out making any claims as to the generality or completeness of the analysis, but rather 
starting from the fact that k 2 can always be those (the moment of inertia of the maximum 
transverse section of the rod can be chosen) so that 0 < p(x) ~ 1 on the interval x 0 2 x ~ x I, 
we take as the basic equation 

o 

d__y" @%2 v = O ,  9 ( z 0 ) = g ( z l ) = O .  ( 2 . 3 )  
d x  2 

Then, u s i n g  t h e  f u n d a m e n t a l  sy s t em o f  s o l u t i o n s  o f  t h e  problem ( 2 . 3 ) ,  c o n s i s t i n g  o f  
the functions sinXx and cosXx, and bearing in mind the first boundary condition, it is con- 
venient to write Eq. (2.2) as an equivalent integral equation 

(x)  = s in  % (x - -  Xo) - -  %A~ (x), 
(2.4) 

A T (x) = J s i n  ~ (x - -  ~) (p (~) - -  t)  ~ (~) d~. 
x 0 

273 



The eigenvalues I~, I~... and the corresponding eigenfunctions q,(x), ~2(x) .... of 
Eq. (2.4) will also be eigenvalues and eigenfunctions of Eq. (2.2). It is important to 
note that zero is not an eigenvalue, and that the nonzero eigenvalues are simple. (For 
some special functions p(x) the problem (2.2) does have an exact solution, and the eigen- 
values of the operator L 1 are doubly degenerate. This case is not considered here.) 

Equation (2.4) is solved by the method of successive approximations 

(p(") (z)  = sin 30 (x -- xo) -- 3,A~o (=-t) (x) ,  ( 2 . 5 )  

and at each step the eigenvalue 12 is determined from the equation obtained taking into 
account the second boundary condition, 

sin l g  - -  Aqo (~) ( x , ) =  O. ( 2 . 6 )  

As the zeroth approximation we dan take ~(~ 0, i or any other function satisfying 
the boundary conditions (1.3). The principle of uniform boundedness [i, 2] guarantees that 
the sequence ~(")(x)i converges, and since 0 < 9(x)~ i, it is obvious that the rate of con- 
vergence will be characterized by the difference IPl - ii, where Pl is the minimum value of 
the function p(x) on the interval (x0, xl). Indeed, since 

sup 
:%4x--<x I 

t sin ;~ (x - -  ~) (p (~) - -  t)  I = I P~ - -  1 l, 

sup I sin % ( x - -  Xo) I = 1, 
Xo~<x-.<X 1 

we have the estimate [i0] 

n! 

Finally, if the integral equation (2.4) does not have an exact solution, which is most 
likely the case, then it is convenient to represent p(x) as an expansion in eigenfunctions 
of Eq. (2.3): 

X I 

p ( x ) =  bhsinkx, b~= p(x)sinkxdx. 
k = l  x0 

Having determined the eigenfunctions and eigenvalues of the operator Lk, we note that 
the minimum positive eigenvalue I~ enables writing the stability condition for the solution 
(2.2) as 

~ = r - x~ < o. ( 2 . 7 )  

The equal sign in Eq. (2.7) determines the critical value k, 2, obtained in the linear approxi- 
mation. For p(x) = 1 the result ~ k~--i~-0 is well known [6-8]. 

Returning to the functions %(x), g= I, 2 .... , it is easy to show that they are square- 
integrable on the interval (x0, x I) and are orthogonal with respect to one another with p(x) 
as the weighting function. The space of these functions is complete with the scalar product 

<~i(x)fp~-(x)>iof the vectors % ( x )  and qb(x) (all properties of a Hilbert space), so that any 

solutions of Eq. (2.1) can be represented as expansions in q01(x), q2(x) .... 

The function ~(x), which has appeared above, is the conjugate of the function %(x) 

with respect to the scalar product and is equal to (~ (x)= ~]fp(x)~j(x) , where M is a constant 

factor. 

Now, having determined the amplitude as the projection of y(x) on the characteristic 
subspace associated with the conjugate vector qg~(x), g = <y (x), ~ (x)>, we seek the solution of 

Eq. (2.1) in the form of the series 
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Fig. 4 Fig. 5 

Before determining g~,, ~, n----I, 2, ... , we express in Eq~ 
equal sign, k 2 in terms of ~ and % 2 so "that the operator is 

L~t = d~-/d:c ~ q- (~ 4- t~) 9 (x). 

Then s u b s t i t u t i n g  Eq. (2 .8 )  in to  Eq. (2 .1 )  and equa t ing  terms wi th  l i k e  powers of  ~ up to  the  
cubic terms inclusively gives the system 

where 

Loyl=0; 

JL ' 2 B  LoY2 + 21q ~ Yl ~ (Yl, Yl) = 0; 

OL o OL o 
Loya + 3~x -@- Y2 + 6B (y~, Y2) + 3~'2 ~ Y~ + 6C (y~, y~, yx) 

(2.8) 

( 2 . 1 ) ,  us ing  Eq. (2 .7 )  wi th  the  

(2.9) 

(2.10) 

(2.i1) --0,  

%:L~ [ dy~ d,~61" 
B(yl, 3'2) = ~ ~ V~--~z + Y~-~z ]' 

C(y~, ~,~, ~,~) = W - l ~  ~7--g;- v v~-27--~ + v3 ?-~ ~-~ ]. 

It follows directly from Eq. (2.9) that U~ = ~l(x). Equations 
solved with the help of Fredholm's theorem of the alternative, 
tions are solvable if 

(2 .10)  and (2 .11)  a re  
accord ing  to which t h e s e  equa- 

and hence 

(LoVo, ~; (~)> = (4Y3, ~ (z)) = 0 

/ OL~ , ~ ( x )~  + <B (Yl, Yl), ~ (x)) 0, 

/ a L ~  ~ (x)/~ + 2 (B (Yl, Y2), ~ (x)> + Pl . \ ~  Y2, 

/" OL o , ~/  * 
+ ~,0. \ ~ w, ~1 (x) + 2 <c (y .  yl, y~), ~ (x)) = 0, 
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whence, since c= = 0 and c~ = -0.5, it is easily found that ~ = 0, y= = 0, and 

Thus the stability boundary in the (~, e) plane is given by the equation 

= 0 , 5 ~ e  ~. ( 2 . 1 2 )  

In order that the solution (2.12) be unique, it is necessary to find a normalization condi- 
tion. To this end, we substitute Eq. (2.8) into the expression for the amplitude e=<y,~(x)> 

and differentiate the latter with respect to r The result is the equation 

(k -- 1)! y~a~-~, r (x = t ,  

w h i c h ,  s i n c e  <Yh, (P~(x)> = 0 f o r  k ~ 1, g i v e s  t h e  n o r m a l i z a t i o n  c o n d i t i o n  <y~, (p~(x)> = 1. 
This condition is equivalent to e----l, M =<~i(x), p(x)~(x)> -~ and makes it possible to 
determine the critical value k2, for which the solution of Eq. (2.1) becomes unstable: 

k,'=~1~2 ' 0 , 5 p o . T  . ( 2 . 1 3 )  

Since ~2 > 0 for any function p(x), the critical load P, = P(k~) in nonlinear analysis is 

higher than that obtained in the linear approximation. 

Returning to Eq. (1.2), we note that this equation has no solutions for k 2 > 0, if 
Xl 2 < 1.5~2.] 

As an example, consider a rod with a parabolic transverse cross section 

p(x)=n:(n 2+ax(n-x) )% O<~x~n, 

where a is a constant. As expected, the integral equation (2.4) does not have an exact 
solution. For this reason we represent p(x) by the first two terms of its series expansion: 

p ( x ) =  b l s i n x  + b2sin 2x. 

Substituting this expression into Eq. (2.5) and writing @~ I, we find the first 
approximation for the eigenfunction: 

bl 
r (x) = (F~ 1) (x) = sin Xlx @ %1 ~ ( *1 sin x -- sin ).r r) 

( 2 . 1 4 )  
2b2 [~ s i n 2 x - -  s in /ux) ] .  

Substituting Eq. (2.14) into Eq. (2.6) gives an equation for ~l: 

b 1 2b,, ] = 0 .  (2 .15)  

The results of calculations of the stability boundary in the (~, e) plane, performed 
using the formula (2.12) and Eqs. (2.14) and (2.15) with a = 0.5, are displayed in Fig. 2 
(curve i); Fig. 3 displays the function k~ = k~(a), calculated using Eqs. (2.7) and (2.13) 

(curves 1 and 2, respectively). For a = 0, calculations using Eq. (2.7) give k 2 = i, and 
Eq. (2.13) gives k~ = 1.125. For comparison, we indicate that for Eq. (1.2) th~ formula 
(2.13) with a = 0 gives k~ = 0.625. 

3. Imperfections. Let the rod contain imperfections such that the problem is written 
mathematically in the form 

d2Y Fk~[p(x) y( l - - (dy/dx)2)~ 
dx2 n=o (3.1) 

k 2 = ~ §  ~(xo)=y(xO =0. 

276 



where m is a constant; ~,(x) (n = 0, 2 .... ) are functions, among which at least ~0(x) is not 

identically zero. 

The meaning of Eq. (3.1) is that in the absence of a load k a + 0, m ~ I/k 2 the axis of 
the rod is not an ideal straight line, and is determined by the equation 

o~ 

+ k% % (x) y~ = O. 
d x  ~ 

�9 l , I =  o 

As one can see from Sec. 2, the solution of the equation F(y, p, 0) = 0 becomes unstable 
when p changes from negative to positive. Hence [4, ii], the point (y, p) = (0, 0) is a 
double singular point, where branching of the solutions occurs. The presence of imperfec- 
tions ~ ~ 0, which destroy the bifurcation at the point (y, p) = (0, 0), leads to isolated 
solutions of the equation F(y, ~, m) = 0 to which the point (y, p) = (0, 0) does not belong. 

The condition <0F(0, 0, 0)/#~, %(x))=/=0 (we use below the simplified notation F(0, 0, 0) = 
F) and the implicit function theorem guarantee that a solution of the equation 

F 

for the formally introduced function 

This solution will be sought as 
Once again, simplifying the notation 

(y(~, e), ~t,z(~, e))=O (3.2) 

z(p, ~) = ~ exists. 

a series in powers of p, s at the point (p, g) = (0, 0). 
by'writing z = z(0, 0), we set 

o + + T + + + - ( [ a ,  ~)  = z , a~ 

I {aaz 3 03% ~ a'% aaz 
-k':LF(o--~ s - { - 3 ~  ~ts'+3~'u=s+-p?a~coe o~, a ) q- " '"  

( 3 . 3 )  

In order to determine the coefficients in the expansion (3~ as a start, we employ the 
properties of the double point 

F = O ,  aF aF (ay) aFaz 
a~ 6y ~ Oz ae , 

The first relation gives, using Eq. (2.8), z = 0, and from the conditions that the 
remaining two relations have a solution 

/ O F  & * ~/. / a F  Oz * "x' \ "  

and the inequality OF/az ~ 0 it follows that Oz/a~ = Oz/ae = O. 

The second derivatives of Eq. (3.2) lead to the system 

o, e~, k a~ ~ / + ~ + e-~ e~ = 

the solvability condition for which 
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~-k~J/' ~ ~ '  ~(~) = 

give, using the effect that c~-----0, ~F/8~= 0i, 

a~---~ = O, a~Y - O, a~Y -- O, a2---.~-~ = O, 

a'~z / aZF t#Yt, (~;(X.)/ /OF ~ - - '  
r ,~ - \ o~ a~ ~ ~T / X ~ '  ~*~ (~) / �9 

Finally, the third derivatives of Eq. (3.2), in which terms containing zero 
are dropped, show that the system of equations 

aF aSYl aFa3z asF a~ ay ay) ~ - 7 ( ~ / + ~ + - -  I =o, ay 3 ~ ' 8~ ' OS 

W k T ~ 7 / +  - - - -  
~ a2F fa2v / 

ae) all, as 

aF (a3y I aF a3z 

a2F a~z : O, 
a~ ae~ ol~ as 

( 3 . 4 )  

cofactors 

has a solution if 

_ _  / a2F (ay ~ 02z > / aF ~--I 

a3~ =-2 k~~-~t~ja-f~, ~*~(x) X~, ~*~(~)/ a~ as ~ 
_ _  = / a~F a~z �9 \ / a F ,  \ - ~  a3z 

03~ - 2 \ o ~ a ~  ~, m ~ ( z ) / \ ~  m~(z)/ , -- =0. 
al~as al ~ 

(3.5) 

The derivatives O~F/Oy ~ (i <~ n) in the expression& presented above must be interpreted 
as matrix differential operators (Frechet derivatives), so that we write the derivatives 
appearing in the system of equations (3.5) as 

a3F 
(ay ay ay) _:_ C (Yl, Yx, Yl), ay 3 ~ ' ae ' as 

aco ay ~ = ~'~ (x) yx, ay a~ ~a~ ! = P (x) yx. 

After substituting the expressions for the coefficients (3.4) and (3.5) into Eq. (3.3), 
the latter equation assumes the form 

o~ @o (x), ~ (x)> = - ZT ~ <p (x) yl,  ~ (~)> ,-~ + 
* 3 * +o,s<p(~)y1(~y{a~)=, ~1(x)>~ ~,~<!~(~)y~,'~,(x)><p(x)y,,~(x)>x ( 3 . 6 )  

Solving Eq. (3.6) by the method of successive approximations, we find the following rela- 
tions between the parameters B = ~(e, m/e): 
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< -" �9 

2 (x) Yl' q~l (x)> <p (x) gl' q~ (x)) s 

( 3 . 7 )  

In the absence of imperfections (~ = 0) Eqs. (3.7) and (2.12) are identical. 
Substituting into Eq. (3.7) the expression for B (2.7) and using the normalization condi- 
tion s = 1 we obtain the relation for the critical value k, 2 of a rod with imperfections. 

Now assume that the rod studied as an example in Sec. 2 contains at the point x = 
a defect, not depending on the deflection, and let @0(x)= 6(x--~)- a delta function and 

~,(x) =0,  ~>0. 

Substituting the expression for ~0(x) into Eq. (3.7) and performing calculations with 
= 1.5~ a=0.5 gives the functions ~ = ~(s, oJ/s), displayed in Fig. 4, and ~t = ~(e; 0.5/e), 

=~(e;--0.5/e), displayed in Fig. 2 (curves 2 and 3, respectively). 

Figure 5 displays the computational results obtained for the critical value k~ = k~(~ a) 

using Eq. (3.7) with ~ = i. For ~=0, ~=~ the calculations using Eqs. (2.13) and (3.7) give 

the same results. 

In conclusion it should be noted that nonlinear analysis is useful in studying the 
the theory of stability of an Euierian rod as a subfield of strength calculations in machine 
building, especially in cases of structures consisting of thin-walled rods, for which the 
limiting loads are limited by considerations of stability. 
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